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Oscillatory Convection and Chaos in a 
Lorenz-Type Model of a Rotating Fluid 
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A four-mode model of convection in a rotating fluid layer is studied. The model 
is an extension of the Lorenz model of Rayleigh-B6nard convection, the extra 
mode accounting for the regeneration of vortieity by rotation. Perturbation 
theory is applied to show that the Hopf bifurcations from conductive and steady 
convective solutions can be either supercritical or subcritical. Perturbation 
theory is also used at large Rayleigh numbers r to predict novel behavior. 
Supercritical oscillatory convection of finite amplitude is found by numerical 
integration of the governing equations. The general picture is of a series of 
oscillatory solutions stable over large r intervals, interspersed by short bursts of 
chaos. 

KEY WORDS:  Convection; Lorenz model; rotating Rayleigh-B~nard 
problem; bifurcations; chaos. 

1. I N T R O D U C T I O N  

A productive technique for studying instabilities and chaos in fluid dynami- 
cal and other nonlinear systems is based on expansion of the variables 
involved as Fourier series in the spatial coordinates. Substitution in the 
governing partial differential equations yields a set of ordinary differential 
equations relating the amplitudes of the Fourier modes. By retaining only 
a few low-order modes, a truncated system of equations is produced which 
can easily be integrated on a computer. Analytic perturbation theory 
techniques provide supplementary information regarding small-amplitude 
behavior. One reason for the popularity of finite-mode truncations is that 
only recently has it become possible to solve the full partial differential 
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equations with sufficient accuracy to detect bifurcations. (1) Moreover, it 
is generally impossible to follow unstable branches of the solution. In 
contrast, the steady branch of a finite-mode truncation can be calculated 
algebraically regardless of stability. Additionally, orbit-folloWing techniques 
allow the bifurcation values of parameters to be pinpointed exactly, 
whereas in the full problem they may be masked by the effects of chaotic 
transients. 

The prototype truncation is the so-called Lorenz model, (2) 

= a ( y  - x )  

j~ = - y  + r x  - x z  

= - b z  + x y  

(1.1) 

This models two-dimensional convection in a horizontal layer of 
homogeneous fluid, heated from below. Here x and y are the coefficients of 
the velocity and temperature modes obtained from linear theory, while z is 
an additional temperature mode which begins to describe the formation of 
thermal boundary layers. The parameters cr, r, and b are the Prandtl 
number, (rescaled) Rayleigh number, and a rescaled wavelength of the dis- 
turbance, respectively. For such a system it can be shown that the vertical 
vorticity decays exponentially to zero and can therefore be ignored. 

This paper describes a related model which includes the effects of 
rotation about a vertical axis. Here, the vertical vorticity does not decay 
and is represented by an extra mode. The resulting four-mode model is the 

~ oo limit of the five-mode model of rotation previously considered by 
Veronis. (3) 

Previous work includes the generalization of the Lorenz equations 
to a torus, carried out by Franceschini e t a / .  (4'5) and Curry's (6) 14-mode 
extension of the basic Lorenz system. Knobloch e t  al. (7'8) have performed 
detailed studies of double diffusive convection and convection in an electri- 
cally conducting fluid influenced by a magnetic field. More recently, normal 
form theory has been used to show that behavior near multiple bifurcations 
may be well described by truncations involving only a small number of 
modes.(9, lo) 

Much discussion has revolved around the question of whether the 
limited set of modes selected adequately represents the full problem. The 
results of applying perturbation theory to the full problem can be 
replicated by first of all including the modes present in linear theory, and 
then adding new modes generated by substituting these linear modes into 
the nonlinear terms of the governing equations. If need be, additional 
modes may be determined by an iterative procedure, the new modes at 
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each step being produced by nonlinear interactions between all the modes 
present at the previous iteration. Knobloch et aL ~8~ observe that the trunca- 
tion is only rigorously valid for small amplitudes, i.e., for values of the 
Rayleigh number close to the onset of convection. Second, the modes 
included represent two-dimensional motion, so the model will be incapable 
of detecting the three-dimensional instabilities which occur at large 
Rayleigh number in a real fluid. Third, the Lorenz system and its 
derivatives invariably use free boundary conditions on the upper and lower 
boundaries, rather than more realistic "no-slip" boundary conditions. 
Clever and Busse Ill) show that one effect of realistic boundary conditions 
is to depress the maximum value of a at which convection is first 
manifested as oscillations. For these reasons our model will not give 
accurate quantitative predictions for experimental results. Nevertheless, as 
the relevant physical effects have been included, we can expect the model 
to remain qualitatively correct beyond convective onset. 

Proceeding in this spirit, Section 2 derives the equations for the four- 
mode model. Section 3 discusses the stability of the steady branch and the 
initial oscillatory branch of convection by means of perturbation theory. 
One advantage of the model is that the large-r behavior, though com- 
plicated, is analytically tractable using elliptic functions. This analysis is 
presented in Section 4. The next section deals with the numerical results in 
the strongly nonlinear regime, and the conclusions follow in Section 6. 

2. DERIVATION OF THE M O D E L  

Consider a layer of fluid confined between two horizontal planes 
z = 0, d maintained at temperatures To + AT,  To respectively, and which 
is rotating about the vertical axis with constant angular velocity ~.  In 
a frame rotating with angular velocity ~ the equations of motion in the 
Boussinesq approximation are ~ 

1 
-77+ (u. V) u + 2~  • u = agT'$  - - -  Vp' + v Vgu (2.1) 
o t  Po 

c3T' A T  
~---~ + u .  V T ' -  w - - d =  ~ V 2 T  ' (2.2) 

V . u = O  (2.3) 

Here u = (u, v, w) is the fluid velocity, v is the kinematic viscosity, ~c is the 
thermal diffusivity, and T' and p' represent deviations in temperature and 
pressure, respectively, from their static distributions. The density of the 



844 Stein 

fluid is given by p=po[1-e (T -To) ] ,  c~ being the thermal expansion 
coefficient. 

Scaling lengths with the layer spacing d, times with the thermal diffu- 
sion time d2/x, velocities with x/d, temperatures with AT, and pressures 
with povx/d 2 produces dimensionless equations: 

- + u ' V u  +D~• (2.4) 
o" 

~T  +u.Vr-w=V2r (2.5) 

where 

g~ A T d 3 v 2C2d2 
R - - - ,  a = - ,  D - 

VX K V 

are the Rayleigh number, Prandtl number, and the square root of the 
Taylor number, respectively. We assume that there is no y dependence, so 
that the continuity equation (2.3) becomes 

0xu + ~_, w = 0 (2.6) 

Therefore u and w can be expressed in terms of a stream function ~ as 

u = a ~ , ,  w = - ' ~ x q J -  

As the vorticity co = ( - # z v ,  V2~, ~3xv), we can equally well use v as use 
co z, and the y component of (2.4) is the equivalent of the vorticity equation. 
Eliminating the pressure term by cross differentiating the x and z com- 
ponents of (2.4) yields the system of equations 

1 [0t V2O _ j ( O ,  V2~k)] - D  (~zV = V 4 ~ / - - R  Ox T 
o" 

(2.7) 

1 
- [ O , v - J ( ~ ,  v)] + D  Oz~' = V 2 v  (2.8) 
ff  

6~t T -  J(l~, T) + Ox~ = V 2 T  (2.9) 

The symbol J denotes the Jacobian J(A, B)= OxA OzB-3zA Ox B. The 
boundary conditions for fixed-temperature, stress-free boundaries are 

= 0 = ~ b = 0 ~ v = T = 0  at z = 0 , 1  (2.10) 



Convection in a Rotating Fluid 845 

Finally, we introduce the truncated representation 

2 I/2p2 
O = Ir-----~ X(r) sin 7rz sin kx  (2.11) 

p6 
T -  rtRk 2 [21/2 Y(z) sin rcz cos kx  + Z(v) sin 2rcz] (2.12) 

21/2p~ 
v = -  W(z) cos zz sin kx  (2.13) 

rtk 

where the rescaled time z = p2t and p2= k2+ ~r2. The spatial dependence of 
the X, Y, and W modes comes from the eigenfunctions for the linear 
problem solved by Chandrasekhar, (12) while the Z mode models the forma- 
tion of thermal boundary layers at the horizontal boundaries. The prefac- 
tors are chosen to simplify the final equations. Substituting this truncation 
into (2.7)-(2.9) and ignoring higher order Fourier components generated 
by nonlinear interactions gives (13) 

2 =  G( r -  X + dW) 

Y =  r X -  Y - X Z  

2 = - b Z  + X Y  

W= ~( - d X -  W) 

(2.14a) 

(2.14b) 

(2.14c) 

(2.14d) 

in terms of a normalized Rayleigh number, wavelength, and Taylor 
number: 

r = Rk2/p 6, b = 4rc2/p 2, d 2 = 7z2D2/p 6 (2.15) 

Note that 0 < b < 4. 
The system (2.14) possesses a spatial symmetry, for it is invariant 

under the transformation (X, Y, Z, W) ~ ( - X ,  - Y, Z, - W), while the 
divergence of the system in phase space 

a2 0i" o2 ork 
~-~+ S-~+ ~ + ow = -(2a + b + 1) (2.16) 

is negative, so that solutions will be attracted to a set of zero measure 
in phase space, for example, a stationary point, limit cycle, or strange 
attractor. 

For convenience, we make a further change in notation; (X, Y, Z, W) 
and ~ will be written (x, y, z, w) and t in subsequent sections. 

822/56/5-6-19 
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3. C O N D U C T I V E  A N D  CONVECTIVE SOLUTIONS:  ANALYTIC  
RESULTS 

3.1. Stabi l i ty  of  the Conduct ive  Solut ion 

The trivial solution x = y = z = w = 0 of (2.14) describes the situation 
where heat transfer is solely by conduction, and there is no fluid motion. 
Its stability to infinitesimal perturbations with time dependence exp(2t) 
may be examined by linearizing (2.14) about (0, 0, 0, 0). The z equation 
decouples, with solution 2--  - b ,  which never causes instability. The other 
three equations give the dispersion relation 

2 3 + ( 2 r r + l ) 2 2 + ( ~ r 2 + 2 r ~ - r r r + ~ 2 d 2 ) 2 + a 2 ( l + d 2 - r ) = O  (3.1) 

One real eigenvalue passes through zero when 

r = r (e) = 1 + d z (3.2) 

and the conducting solution loses stability to a direct mode. 
A pair of complex conjugate eigenvalues crosses the imaginary axis 

(2 = _+ico0) when 

2o-2d 2 
r=r(~ + 1 ) + - -  (3.3) 

r r + l  

provided that 

is positive, which in turn requires 

d 2 -  1 
o-< a o = - - <  1 (3.5) d 2 + 1  

In this case the conducting solution loses stability to an oscillatory mode. 
Since 

r(e)_ r(O) - 2cr + l e o  2 (3 .6 )  
Cr 2 

two alternatives may be distinguished. 

(i) (no 2 < 0. The conduction solution is involved in exactly one bifur- 
cation at r = r (e). In fact (see Section 3.2 below), it loses stability to a steady 
convective solution. 
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(ii) co2>0. The conduction solution bifurcates at r = r  ~~ to an 
oscillatory convective solution. A second bifurcation occurs at r = r  (e). 
However, the conduction solution remains unstable, as can be seen by 
tracing the behavior of the eigenvalues 2 in the range r (~ < r < r (e~. At r (~ 
two complex conjugate eigenvalues acquire positive real parts. As r 
increases, the magnitude of their imaginary parts decreases to zero, and 
they become real and equal. One then decreases in order to pass through 
zero at r = r (e). The other increases and so ensures the continuing instability 
of the conduction solution. 

3.2. The  S t e a d y  Branch 

Equations (2.14) have a time-independent, finite-amplitude solution 

(l q-- d2) $2, 
x = s ,  y = ( l  + d 2 ) s ,  z w =  - d s  (3.7) 

b 

where 
F 

The solution exists provided r > 1 + d 2. At this point the amplitude of the 
solution shrinks to zero, identifying it as being involved in the pitchfork 
bifurcation at r = r ( e ) .  Two solution branches exist, given by s positive and 
s negative. As one branch is the image of the other under the symmetry 
transformation, we need only consider the case s > 0. 

Changes to the stability of the steady convective solution above r = r (e) 

are located using linear perturbation theory, which considers infinitesimal 
perturbations about (3.7) with time dependence exp(2t). The resulting 
dispersion relation is quartic, 

•4 - t -  a3)~ 3 -l- a222 + al2 + ao = 0 (3.9) 

where 
a 3 = 2 a + b +  1 

a 2 = A ( a 2 - c r ) + 2 a ( b +  1 ) + ( b + s  2) 

al = (a 2 - a) bA + as2A + 2a(b + s 2) 

ao = 2o'2s2A 

(3.10) 

and 

A = l + d  2 (3.11) 
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The solution 2 = 0 is forbidden, because a 0 is always positive. Hence the 
possibility of a pitchfork bifurcation where a real eigenvalue changes sign 
is excluded. The other possibility is a Hopf  bifurcation, obtained when 
2 = _+i0). The real and imaginary parts of (3.9) then form two equations in 
s 2 and co. The neatest way of proceeding is to use (3.8) to replace s 2 by r, 
then eliminate r via the relation 

1 F2o'+_b + 1 ] 
r = A +~  [_ ab Aco 2 - (a - 2) A 2 (3.12) 

The end product is a quadratic equation for 0) 2, 

O~(O 4 -~-/~(d) 2 + ~ = 0 (3.13) 

where 

c ~ = a A - b - 1  

fl = - A ( A  + 2) ~r2(cr- 1) + 4a2e + ~ r b A ( a -  2) 

7 =  - 2 a 3 b A [ (  ~ -  1)A + 2 ]  

(3.14) 

Simple considerations regarding the number of real, positive roots of (.0 2 

in (3.13) determine how many Hopf  bifurcations occur. The results are 
summarized in Table I. 

Inverting (3.8) to give r as a function of the amplitude s shows that the 
bifurcation is supercritical and the curve r(s) contains no turning points. A 
general result (v) states that if Hopf  bifurcations are excluded, the steady 
branch can only change its stability at r =  r (e) or a turning point. This 
confirms our previous observation that an eigenvalue cannot pass through 
zero above r = r (e). We are now in a position to give a complete description 
of the stability of the steady branch. Various different cases can be dis- 
tinguished by tracing the evolution of the eigenvalues of (3.9). The techni- 
ques are standard, (s) so we omit the details and illustrate the results in 
Fig. 1. Note that Eq. (3.10) constrains the sum of the eigenvalues to be 

Table I. N u m b e r  of Hopf  Bifurcat ions Occurr ing on the Steady Branch 

a > l  ~Y0<~Y< 1 o ' < ~  o 

a > ( b +  1)/(d2+ 1) 1 1 0 o r 2  
~ < ( b +  1)/(d2 + 1) 0 0 o r 2  1 
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(a) 

r{e) - + r 

X j (b) 

- -  r(e) rH - + r 

X ~ (d 

/ 

/ / ~ i ~ -  - 

-/ > 

- -  I - -  

- -  r(e) rH - + rH' r 

{d) 

/ 

-_~ ++//~ 
/ 

/ 

__ r(O) * * - ~ ( e ~ - z + ~  

(e) x, (f) 

/ / + §  

i1++ /J~--- /++ 
. . . .  J - - - U -  > - k - - l - - - - I -  > r  

rt0) ++ r(e)_+ rH r - -  r ( o )  + +  r ( e )  rH rH, _ +  

Fig. ~. Evolution of the steady branch in the r-amplitude plane, (a-c)  No  oscillatory branch 
(o~ 2 < 0) and 0, 1, 2 Hopf  bifurcations on the steady branch. (d-f) The steady branch is ren- 
dered initially unstable by the presence of the oscillatory branch. Broken lines represent 
unstable solutions. The plus and minus signs denote the signs of the real parts of the two 
significant eigenvalues of the linearized flow. The remaining two eigenvalues always have 
negative real parts. In panels (b), (e), and (f) the bifurcations at r R, r H, can be in opposite 
directions to those shown. 

negative. This consideration leads to the restabilization of the steady 
branch at the second Hopf bifurcation in Fig. lc and at the first Hopf 
bifurcation in Figs. le and lf. 

3 .3 .  S t a b i l i t y  o f  O s c i l l a t o r y  S o l u t i o n s  ' B i f u r c a t i n g  f r o m  
C o n d u c t i o n  a n d  S t e a d y  C o n v e c t i o n  

Although large-amplitude oscillations can only be studied by integrat- 
ing equations (2.14) numerically, the behavior of the oscillatory branch in 
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the neighborhood of the onset of convection at r = r  (~ is accessible via 
modified perturbation theory. Details of the calculation appear in 
Appendix A. It is found that the bifurcation to oscillations can be either 
supercritical or subcritical, depending on the values of ~r, b, and d. The 
Hopf bifurcation theorem tells us that a supercritical bifurcation leads to 
stable oscillatory motion above r = r (~ This is the case for the parameter 
values examined numerically in Section 5. However, subcritical bifurcations 
may also occur, particularly for large values of the Taylor number d 2. A 
branch of unstable oscillatory solutions then exists for r < r  (~ If this 
branch subsequently gains stability by reversing direction toward large r, 
finite-amplitude oscillations may be observed immediately above r = r (~ 

The Hopf bifurcation from steady convection at r=rr~ can be 
examined in a similar way. It has been shown that, in the Lorenz model, 
this bifurcation is subcritical for all choices of parameter values. (15) Above 
r = rr~, solutions of the Lorenz equations are chaotic, at variance with 
experiment and the solutions of the full partial differential equations, which 
show stable oscillations, indicating the presence of a supercritical bifurca- 
tion. Curry's extension (6) of the Lorenz model to 14 modes reproduced the 
supercritical behavior. It is of interest to determine whether the addition of 
rotation to the basic Lorenz model can reverse the direction of the bifurca- 
tion. We proceed by applying modified perturbation theory. 

J 
J 

J 

f II I 

f 
f 

J 

7 

f 

f 

f 
/ 

J 
f 

Fig. 2. The four types of Hopf bifurcation from the steady branch. Broken lines denote 
unstable solution branches. The oscillatory solutions have opposite stability to the coexisting 
part of the stationary branch. 



Convection in a Rotating Fluid 851 

d 2  
( a )  

1" I - 

~ 3 " 5  
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2 
15 
1"0 
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6 8 10 12 1~ 16 ~& ~ 0  

(b) 

I 

6 
I 

2] -0.5 

0;1 0~2 0.'3 0.~, 015 (7 
Fig. 3. Values  of  d at which s 2 = 0 ,  marking a transition between subcritical and supercritical 
bifurcations. The  curves are labeled with the value of b. (a) co 2 < 0. (b) coo 2 > 0, and the b = 1 

curve ends on the line co 2 = 0. The  other curves terminate when  ~r = (b + 1 ) / (d  2 + 1) and the 
bifurcation ceases to exist. 
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Suppose the Hopf bifurcation occurs at the point s = s o (see Eq. 3.7). 
It is convenient to use s rather than r as parameter to avoid the need to 
take square roots. A nearby point on the steady branch is given by 

s =-So + ~2s2 + ... (3.15) 

and r is recovered from (3.8), 

[ '  1 r = (1 + d 2) 1 + ~ (sg + 2e2SoS2) + O(~ 4) (3.16) 

We assume periodic motion for perturbations about this point: 

d 
--s ( x  - s )  = & o ( x  - s )  (3.17) 

and similarly for the other variables. 
As the calculation now proceeds just as before, only the result is 

quoted in Appendix A. Again the bifurcation can be in either direction (see 
Fig. 2). From (3.16) it is forward if s2 > 0 and backward if s2 < 0. Although 
two Hopf  bifurcations can sometimes occur (Figs. lc and If), the discussion 
below concentrates on the first bifurcation, at r = rH. 

If d is increased with a > 1, s2, although initially negative, rapidly rises 
to pass through zero at d,-~ 1. Shortly afterward it reaches a maximum and 
then slowly decays, i f  a < ao, s2 starts off negative and becomes positive at 
a somewhat larger value of d, provided a is small enough. This time the 
transition is from stable to unstable oscillatory solutions with increasing d. 
For larger values of a, s2 remains negative throughout. The values of d at 
the transition between subcriticality and supercriticality are plotted in 
Fig. 3. The intermediate case 1 > a > ao is more complicated; s2 can be 
either positive or negative at small d and a change of sign may or may not 
take place, depending on the values of a and b. However, when two Hopf  
bifurcations occur, both always appear to be subcritical, as drawn in 
Fig. lc. Thus, both oscillatory solution branches are initially unstable. 

4. B E H A V I O R  A T  L A R G E  r 

In the limit r ~  0% the system (2.14) can be analyzed by treating 
= r -1 /2  as a small parameter. We will see that the large-r results so 

obtained yield useful constraints on the behavior at smaller values of r. The 
discussion in this section relies heavily on the analogous treatment of the 
Lorenz equations in Sparrow's book. (16) 
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The relative magnitudes of the variables at large r are found by 
considering the function 

V =  rx  2 + ~ry 2 + cr(z - 2r) 2 + rw 2 (4.1) 

which has time derivative 

d V  
_ 2cr[rx 2 + y2 + b ( z -  r) 2 + rw 2 - br 2] (4.2) 

dt 

Let D be the ellipsoidal region inside which dV/d t  >~ 0 and let E be the 
region V < ~ c + 6 ,  where c is the maximum of V in D and a is small, 
positive. A phase space point x = (x, y, z, w) which lies outside E must 
also lie outside D and hence satisfies l/(x)~< - a ' ,  where 6' depends on 6. 
A trajectory commencing at x will eventually enter E and subsequently 
remain inside E. 

Since surfaces of constant V are ellipsoids centered on (0, 0, 2r, 0), 
it is clear that the maximum of V in D lies on the boundary of D. 
Maximizing V subject to the constraint 

r x  2 - k  y2 + b(z  - r) 2 + r w  2 ---- br 2 (4.3) 

results in three alternatives: 

~rr2b 2 
(i) Vm,x = if b~>2, ~ > 1  

b - 1  

r2b 2 (4.4) 
(ii) Vmax=b__  a if b>~2a, ~ < 1  

(iii) Vmax = 4ar 2 otherwise 

In each case the maximum of V in D, and hence also the maximum of V 
in E, is O(rZ). Comparing (4.1), we see that 

x = 0(r l /2) ,  y = O(r) ,  z = O(r),  w = O(r 1/2) (4.5) 

This suggests the rescaling 

e = r  1/2 x~__g-l~, y = 8 - 2 o . - l t /  
(4.6) 

z = e - 2 ( e - l Z + l ) ,  w = e  1#, t = e v  

where the new variables (~, q, Z,/~) are O(1). gubstitution in (2.14) gwes 

d~ 
= q - e~r + e a d #  (4.7a) 
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d .  
= - ~ z -  ~, 

d Z  
- ~ - ~ b ( Z  + ~) 

dr  

- -  = - a a l ~  - ead~ 
dr  

(4.7b) 

(4.7c) 

(4.7d) 

In the limit e ~ 0, Eqs. (4.7) become 

d~ 
d r - r /  

d~ 
- - ~ a  

dr 

d Z  
- - - - _ _ .  

dr ~ 

- 0  
dr 

(4.8a) 

(4.8b) 

(4.8c) 

(4.8d) 

These equations have three first integrals, 

2 - -  2Z = 2A 

/12 q-- Z 2  _~ B 2 

# = C  

(4.9) 

where B >t 0 and A ~> -B.  
Equations (4.8) can now be integrated to express (~,r/ ,Z,#) in 

terms of r and the three constants A, B, and C. Details of this calculation, 
involving the use of Jacobian elliptic functions, appear in Appendix B 
together with a detailed derivation of the averaged equations. Returning 
now to the situation when a # 0, we expect A, B, and C to be slowly 
varying rather than constant. Indeed, differentiating (4.9) and using the 
exact equations (4.7) gives 

A '  = e( - a~ 2 + b Z  + b~r + adl.t~) 

B B '  = - e ( r l  2 + b Z  2 + b a Z )  (4.10) 

C '  = - ~ ( a ~  + ad~)  

confirming that the time derivatives are all O(e). Appendix B demonstrates 
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expli~citly that the solutions of the e = 0 equations are periodic orbits. We 
may therefore apply the method of averaging and integrate (4.10) over one 
period of the e = 0 equations. This procedure gives average values for A', 
B', and C' (in terms of A, B, and C) relating to the full ( e r  equa- 
tions (4.7). Stationary points of the averaged equations correspond to 
periodic orbits in the original variables. Degenerate cases, e.g., B = 0, give 
stationary points of the original equations rather than periodic orbits. 

The results of the calculations in Appendix B can be summarized as 
follows. 

(i) Introducing a parameter 2 = ( c r + l ) / ( b + 2 ) ,  we find that if 
2 > 2/3, there is a stable symmetric orbit at large r. Otherwise, no stable 
orbit persists to large r. This is exactly the same result as for the standard 
Lorenz model. (16) 

(ii) If a > (b + 1)/(d2+ 1), one pair of nonstable, asymmetric orbits 
exists at large r. 

If ( b + l ) / ( d 2 + l ) - e ' < ~ < ( b + l ) / ( d 2 + l )  and d 2 < ( b + 2 ) / b ,  two 
pairs of nonstable, asymmetric orbits exist at large r. The parameter e' is 
in principle a function of b and d, and is small. Otherwise there are no non- 
stable orbits at large r. 

(iii) The averaged equations have a stationary point at 
A = b/2(1 + d2), B =  0. Following Sparrow, (16) we identify this stationary 
point with the two stationary points of the original equations which signify 
the two branches of the steady convective solution. If cr < (b + 1)/(d 2 + 1) 
trajectories with B small, positive move toward the stationary point. This 
ties in nicely with the work of Section 3.2, because if a < (b + 1)/(d 2 + 1), 
then for r (e) < r (~ the steady branch undergoes zero or two Hopf bifurca- 
tions and is stable at large r. Conversely, if r(~ r (e), the steady branch 
ends up stable at large r through restabilization at a single Hopf bifurca- 
tion. 

The origin of these asymmetric orbits is not as clear-cut as in the 
Lorenz model. The situation with ~ > (b + 1)/(d 2 + 1) corresponds to types 
(b), (d), and (f) of Fig. 1. In type (b) the large-r orbits may originate from 
the Hopf bifurcation at rH, while in type (d) they may come from the 
oscillatory branch which starts at r (~ provided it subsequently undergoes 
a symmetry-breaking bifurcation. Types (a), (c), and (e) may all arise if 
~ < ( b + l ) / ( d 2 + l ) .  We expect type (a) t op roduce  no orbits at large r 
because the stationary branch is forever stable. If ~r > ~o the possibility of 
two orbit pairs at large r seems to be related to the appearance of type (c) 
behavior, the two pairs being remnants of the bifurcations at rH and rh 
respectively. However, two pairs can still be produced if a < ~o. 
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For the standard Lorenz model one pair of nonstable, nonsymmetric 
orbits exists if 2/3 < 2 < 1; otherwise there are none. The radically different 
result obtained here for the rotating fluid layer is essentially due to a 
logarithmic singularity in the term proportional to d 2 in the equation 
(B12) which determines stationary points of the averaged equations. This 
term can therefore become dominant regardless of the size of d, provided 
d is not zero. 

5. CHAOTIC AND OSCILLATORY NONLINEAR SOLUTIONS 

When nonlinear effects are large, Eqs. (2.14) must be solved by 
numerical integration. It is convenient to view the solutions as trajectories 
in four-dimensional phase space. From this viewpoint an oscillatory solu- 
tion forms a closed orbit in phase space. Our study makes use of powerful 
orbit-following techniques devised by Curry (18) and described in detail by 
Sparrow. (16) 

An important feature of the orbit-following program lies in its ability 
to follow orbits as r changes. Were the solution to be computed afresh for 
each r, much time would be wasted waiting for transients to decay. The 
technique also allows precise determination of parameter values at which 
bifurcations occur. Examination of Floquet multipliers permits us to 
distinguish among saddle-node, symmetry-breaking and period-doubling 
bifurcations. 

The necessary integrations were performed by a fourth-order Runge- 
Kutta method with varying timesteps, using NAG routines D02BAF and 
D02BBF. 

5.1. The Regime Where the Conduction Solution First Loses 
Stability to Oscillatory Convection 

We consider in detail the case a = 0.5, b = 2, d =  3, so that r~~ 6, 
r(e)= 10, and Eqs. (3.9) (3.14) reveal the steady convective branch to 
be unstable for all r and as such unlikely to exert any influence on the 
observed motion. The Hopf bifurcation at r = 6 is supercritical and stable 
oscillatory motion is observed for r > 6. At first the amplitude of the solu- 
tion increases rapidly with increasing r, as the oscillations evolve away 
from the sinusoidal form predicted by perturbation theory. As r increases 
further, the period and amplitude of the solution, which we label orbit A, 
change much more slowly. As predicted in Section 3, the orbit is sym- 
metric, and it remains stable until r~27.14, where it loses stability in a 
symmetry-breaking bifurcation. The now unstable orbit continues in 
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Fig. 4. Limit cycles when a = 0.5, b = 2, d=  3, plotted in the x - y  plane. (a) Orbit A, r = 24, 
period 5.06. (b) Orbit B, r = 57, period 5.38. (c) Orbit C, r =  57, period 8.36. (d) Orbit D, 
r = 62, period 8.59. (e) Orbit E, r = 63.5, period 11.39. (f) Orbit F, r = 38.685, period 9.02. 
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existence beyond r = 38, at which point its period is steadily increasing 
and the orbit-following program has difficulty converging, both factors 
suggesting that it is approaching homoclinicity. [Strictly speaking, orbit A 
becomes nonstable rather than unstable at r ~ 27.14, i.e., the flow linearized 
about the orbit has at least one positive and one negative eigenvalue. N o  
solution of (2.14) can be unstable, because then the flow in a neighborhood 
of that solution would be locally expanding, which contradicts (2.16). 
However in this paper the terms unstable and nonstable will be used inter- 
changeably.] Integration of (2.14) above the bifurcation value produces 
chaotic solutions (Fig. 6) even for r values differing from the bifurcation 
value by only 10 -4 . We hypothesize that the symmetry-breaking bifurcation 
is in the backward direction. The pair of nonsymmetric orbits involved would 
then be unstable and difficult to detect. The general form of orbit A is 
illustrated in Fig. 4a, while Fig. 5 shows schematically the ranges of stability 
of all the oscillatory solutiom found. 

Two more symmetric orbits are created simultaneously in a saddle- 
node bifurcation at r = 43.06, one of which (labeled B) is stable. Solutions 
of (2.14) starting at an arbitrary point in phase space eventually converge 

+ 

/ 

J B '  . -  
, 

i 

B ~ _ _  . . . . . . . . . . . . . . . .  - - 

27.1~, 38.6t~ 39./,~ t,3+06 s3:s2 ++'.+ +116+ ++i++ +31o3 6~.++ +~ 
�9 Symmetry breaking bifurcation 

O HaRt bifurcatbn 
S a d d l e  node bifurcation 

Period doubling bifurcafmn 

Fig. 5. The various oscillatory solutions present at tr =0.5,  b = 2, d =  3. The branches of 
orbit B and the other major orbits A, C, D, and E are arranged so that period increases along 
the vertical axis. Owing to the limitations of a two-dimensional representation, the same is not 
true for the details of the figure; for example, the two asymmetric orbits participating in a 
symmetry-breaking bifurcation are images of each other under the symmetry and so have 
equal period for all r. 
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Fig. 6. Chaotic solution obtained immediately above the stable range of orbit A, at 
r = 27.1327. 

onto this orbit. At the bifurcation value r0, suppose x is the intersection of 
orbit B with a given return plane and ~ is the orbital period. When 
r = r o + fir, let the corresponding quantities be x + fix, ~ + &. Then the 
unstable partner orbit B' can also be located, because at r = r o + f ir ,  a point 
lying on this orbit is x -  6x and the orbital period is z -  f i r ,  to first order 
in small quantities. These initial guesses are sufficiently good to enable the 
orbit-following program to converge onto B'. Orbit B remains stable until 
it participates in a symmetry-breaking bifurcation at r ~ 59.2. Meanwhile, 
orbit B' can be traced up to r = 48.33, where a further saddle-node bifurca- 
tion ensues. A new stable partner orbit can be found in the same way as 
above and can be followed, with decreasing r this time, to r ~ 25.86, where 
yet another saddle-node bifurcation occurs. Such behavior, particularly 
when sketched in the r - z  plane (Fig. 5), strongly resembles the oscillatory 
approach to a homoclinic orbit investigated theoretically by Glendinning 
and SparrowJ 19) In theory, further branches of this solution could be 
followed between saddle node bifurcations by alternately increasing and 
decreasing r. However, in practice the orbit labeled B" in Fig. 5 is already 

822/56/5-6-20 
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violently unstable throughout most of its range of existence, one of the 
Floquet multipliers becoming very large. Note that although B" is (just) 
stable in the immediate vicinity of the two saddle node bifurcations, it 
quickly loses stability via symmetry-breaking bifurcations, a phenomenon 
previously observed in other systems./19) Thus, it proved impossible to 
converge onto solution branches of higher period. 

Solutions in the range 27.14 < r < 43.06 are generally chaotic, although 
a myriad of narrow periodic windows is imbedded in the chaotic region. By 
far the shortest period of these is orbit F, an asymmetric orbit born in a 
saddle-node bifurcation at r ,~ 38.64 and persisting until r = 39.48, where 
there is a transition back to chaos via a period-doubling cascade, the first 
few period doublings occurring at r =  39.48, r = 39.49, r = 39.4909. The 
other periodic windows occupy narrower r intervals. Some of the shorter 
period examples found are listed in Table II. 

Proceeding now to the situation above r = 59.2, where orbit B has 
become unstable, solutions starting in the vicinity of orbit B do not even- 
tually converge onto an antisymmetric orbit of similar period. This leads to 
the hypothesis that the symmetry-breaking bifurcation at r = 59.2 is again 
subcritical, with the asymmetric orbit pair produced being unstable. (Since 
two unstable orbits are involved, we cannot predict their positions and  
periods using the first-order methods which were successful at saddle-node 
bifurcations.) Instead, solutions immediately above the symmetry-breaking 
bifurcation approach another symmetric orbit of higher period, orbit C. 
This stable orbit can be followed with increasing r up to r ~ 61.87, where 
it surrenders its stability in a symmetry-breaking bifurcation, but it can 
also be followed with decreasing r until it is annihilated in a saddle-node 

Table II. Some of the Periodic Windows in the �9 I n t e r v a l  between Orbit A 
Losing Stability and the Appearance of Orbit B, for ~ = 0 . 5 ,  b = 2 ,  d = 3  a 

Stable r range Number  of loops Symmetry 

38.00-38.12 5 S 
39.66-39.95 5 S 
40.27-40.93 3 S 
40.98-41.08 7 S 
41.14-41.61 3 A 
41.70-42.02 5 S 
42.45-42.56 4 A 

a The number  of loops executed in the x - w  plane before the orbit closes on itself provides a 
measure of orbital period. S, A stand for symmetric and asymmetric,  respectively. 
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bifurcation at r = 53.52. Hence, over the range 53.52 < r < 59.2, two distinct 
orbits B and C are simultaneously stable. 

Above r = 61.87, solutions snap through to orbit D. Although orbit D 
is asymmetric, it cannot be directly involved in the symmetry-breaking 
bifurcation because its period is approximately 8.53 dimensionless units, 
appreciably different from orbit C, whose period is ~ 8. Neither is there a 
Floquet multiplier 1 at r = 61.87. That orbits C and D are, nevertheless, 
closely related can be seen by tracing D back to a saddle-node bifurcation 
at r E  61.675, by �9 time its period has dropped to 8.23. Its unstable 
partner orbit D' has shorter period and as r approaches 61.87 the period 
tends to 8.0 and the largest Floquet multiplier tends to 1, confirming that 
D' is indeed one of the asymmetric orbits produced in the symmetry-break- 
ing bifurcation, the other being the image of D' under the symmetry trans- 
formation. The interaction between C and D is summarized in Fig. 7 and 
provides an explicit demonstration that the symmetry-breaking bifurcation 
which terminates the stable range of orbit C is backward. Contrast the 
situation regarding orbits A and B, where some doubt always exists owing 
to the possibility of a supercritical period-doubling cascade occurring in 
some arbitrarily small interval of r values immediately following the bifur- 
cation. Orbit D ultimately loses stability in a period-doubling cascade, the 
doubled orbit appearing at r ~ 62.03. The next two bifurcations to quad- 
rupled and eightfold orbits take place at r ~ 62.092 and r ~ 62.105, respec- 
tively. After the accumulation point of the period doublings, there is an 

DB 

f 

t 
\ 

r 1 
61.675 61.87 

J J I 
62.03 62.092 62.105 

Z~F' 

Fig. 7. Details of the interaction between orbits C and D. The only symmetric orbit present, 
orbit C, goes unstable in a backward symmetry-breaking bifurcation, involving orbit D'. 
Orbits D and D'  emanate  from the same saddle-node bifurcation. Orbit D ultimately loses 
stability in a period-doubling cascade. Hysteresis can be observed between r = 61.675 and 
r=61.87 .  
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Fig. 8. Limit cycles when tr = 4, b = 8/3, d =  2.5, plotted in the x -y  plane. (a) Asymmetric 
orbit A, r = 63, period 0.96, (b) symmetric orbit B, r = 65.9, period 2.04, (c) symmetric orbit 
C, r = 80, period 3.18. 
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inverse cascade of chaotic solutions which exhibits noisy periodicity, 
followed by fully developed chaos. Solutions for still larger values of r 
remain chaotic until, at r ~ 63.03, yet another saddle node bifurcation takes 
place, generating a stable symmetric orbit E of higher period than orbits C 
and D (Fig. 4e), and its unstable partner, orbit E'. Orbit E also loses 
stability through a period-doubling cascade in the forward direction. The 
symmetry-breaking bifurcation, a necessary precursor to period doubling, 
occurs at r~63.83,  with a relatively widely spaced sequence of period 
doublings, the first three being at r ,~ 64.55, r ~ 64.67, and r ~ 64.70. 

Table III. B i furcat ion Values of r for  the First Few Period Doubl ings for  
Orbits A,  B, C w h e n  a = 4 ,  b = 8 / 3 ,  d = 2 . 5  a 

A B C 

S ~ A N A  65.97 81.2 

1 ~ 2 63.776 70.074 83.790 

2 --* 4 63.846 70.8410 94.2828 

4 ~ 8 63.8584 71.0045 84.3889 

8 ~ 16 63 .86097 

16 --* 32 63 .86152 

a S  ~ A  indicates the, symmetry-breaking bifurcation, which applies only to an initially 
symmetric orbit; 1 --* 2 indicates period doubling, 2 ~ 4 period quadrupling, etc. 
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The unstable continuations of orbits B, C, and E together with the 
unstable orbits C' and E' were followed with increasing r until in each case 
the orbit-locating program had difficulty in converging, partly due to an 
increase in orbital period. Often this did not happen until a considerable r 
interval had elapsed. It seems that these orbits eventually disappear in 
homoclinic bifurcations. 

5.2. The Regime Where the Conduction Solution Loses 
Stability to Stationary Convection 

We concentrate on the parameter values cr =4, b = 8/3, d=  2.5. The 
value of d is chosen to give a large, positive value of r2 at the Hopf bifurca- 
tion from steady convection and so maximize the likelihood of observing 
supercritical stable oscillations. At the same time, d is not so large that 
interesting behavior only occurs at inconveniently high values of r. 

The conduction solution is stable until r = 7.25 and trajectories in 
phase space tend to the stationary point at the origin. The steady convec- 
tive solution is stable for r values above 7.25 but below the Hopf bifurca- 
tion value of r ~ 61.02. Trajectories spiral in to one of the stationary points 
given by Eqs.(3.7) and (3.8). Beyond the Hopf bifurcation stable 
oscillatory motion is indeed observable (orbit A) until, at r =  63.78, the 
asymmetric orbit A loses stability in a period-doubling bifurcation. 
Further, rather tightly spaced period-doubling bifurcations follow and 
immediately beyond r ~ 63.86, the solution is chaotic. 

S~eady 
Convection 

Fig, 9. Schemat ic  b i furca t ion  d i ag ram for a = 4, b = 8/3, d =  2.5. 
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Fig. 10. The transition between stable symmetric orbit B and chaos. (a) Nonsymmetric 
solution at r=70.05. (b) Doubled solution at r=70.80. (c) r=71.17, noisy periodicity. 
(d) Fully developed chaos at r = 73.00. 
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Two other stable orbits, B and C, were discovered for this system, 
born in saddle-node bifurcations at r ~ 64.31 and r g 75.7, respectively, and 
both symmetric. Refer to Fig. 8 for illustrations of A, B, and C, and Fig. 9 
for a bifurcation diagram. The stable ranges of B and C are terminated by 
symmetry-breaking bifurcations with associated series of period doublings. 
Some of the doubled orbits and chaotic solutions associated with orbit B 
are depicted in Fig. !0. Note that all the bifurcations here are supercritical, 
lending the bifurcation diagram a much more uniform appearance than the 
one in Section 5.1. A comprehensive list of r values at which bifurcations 
take place is presented in Table III. 

Such sequences of period-doubled solutions were first observed in one- 
dimensional maps, for which Feigenbaum (2~ showed that if the nth period 
doubling occurs at parameter value r = r,, then 

rn-rn-1--*c~ as n --* oe (5.1) 
rn+l  --/ 'n 

where 6 ~ 4.6692... is a universal constant. Computation of the left-hand 
side of (5.1) for the values listed in Table III, and also the doubled orbits 
generated by orbits D, E, F of the previous section, shows that (5.1) 
appears also to hold for the system of ordinary differential equations (2.14). 
Although (5.1) has not been proved to apply to systems of ordinary 
differential equations, its apparent validity has been observed in other 
truncated systems. (5'21) 

6. CONCLUSIONS 

A general pattern can be perceived in the results of the previous sec- 
tion. The first oscillatory branch of solutions appears in a Hopf bifurcation 
from either the conduction solution or the stationary convective solution. 
After it has given way to chaos, further oscillatory solutions are generated 
at saddle-node bifurcations and disappear at symmetry-breaking bifurca- 
tions (if symmetric) or period-doubling bifurcations (if asymmetric). The 
general impression is of a series of stable orbits punctuated by short 
chaotic regions. Contrast the Lorenz equations, where narrow periodic 
windows separate chaotic solutions stable over large r intervals. We 
conclude that the effect of adding rotation to the Lorenz model is not only 
to delay the onset of convection as predicted,by linear theory, but also to 
enhance stability above convective onset by favoring oscillatory solutions. 
Of course, in a real fluid, relaminarization at high Rayleigh number would 
not be observed. 

The rotating system (2.14) provides examples of subcritical symmetry- 



870 Stein 

breaking bifurcations and sizable regions where two different oscillatory 
solutions are simultaneously stable, allowing the possibility of hysteretic 
transitions between them. 

The large-r analysis demonstrates that special behavior occurs when 
d 2 < ( b + 2 ) / b  and a is just less than ( b + l ) / ( d 2 + l ) .  Thus, equations 
(2.14) provide an explicit example of a system where certain phenomena 
are restricted to a small region in parameter space. Evidence that this large- 
r behavior influences behavior at much lower values of r, at least when 
o > a0, is provided by the apparent link with the occurrence of two Hopf 
bifurcations on the steady branch. The conditions for anomalous large-r 
behavior can also be satisfied when a < ao, particularly if b is small. 

Finally, we reiterate that the four-mode model is expected to give 
good qualitative agreement with the results of future experiments on 
rotating convective layers and predicts phenomena not previously observed 
experimentally in other systems. 

APPENDIX  A. 

Analysis of small-amplitude oscillations bifurcating from the conduc- 
tion solution at r = r (~ proceeds as follows. For periodic motion with fre- 
quency co, differentiation with respect to time is equivalent to multiplica- 
tion by /co. Expanding in terms of a parameter e which measures the 
amplitude of convection, we have 

CO = (D O + g (D 1 -}- 82( .02  -~- �9 �9 �9 

r = ro + er~ + 82r2 q- �9 �9 - 

X = 8 X  1 -~- g 2 X  2 -~- 8 3 X 3  -}- �9 �9 �9 

y = e y ~  + 8 2 y 2  -+- 8 3 y 3  + . .  �9 

Z = a Z  1 + 8 2 Z 2 - t - g 2 Z  3-~- " ' "  

W = E W  I ' - ~ 2 W  2 n  t - 8 3 W 3 W  " ' "  

(AI) 

Substitution of the expansion (A1) into the governing equations (2.14) 
gives at first order 

k o y, = --r o io9 o+1 0 } [ y l J = 0  (A2) 

Wl od 0 i c o o + ~ / \ w l /  

together with zl = 0. A nontrivial solution requires det(L0)= 0. 
Equating real and imaginary parts reproduces (3.3) and (3.4). An 
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alternative way of expressing this condition ~8~ (which will prove useful in 
later stages of the calculation) is 

Mo" Lo = 0 (A3) 

where M o is the first row of a matrix which reduces L o to lower triangular 
form. In this instance 

M o =  ((i~Oo + 1) ( imo+a) ,  a(&Oo+a), ad(i~Oo+ 1)) (A4) 

Equation (A2) can be solved for (xl,  Yl, wl) up to a normalization factor 

FO eir176 
X l ~ eiC~ Y l 

ko0+ 1' 

At second order we find 

fide i~ t 
wl = (A5) 

ico 0 + a 

(x2)  i lXl ) 
[-o Y2 = ~ - - i ~ o l Y l  q - r l x l  

W2 \ --iO)l W1 

(A6) 

Multiplying by M 0 and taking real and imaginary parts gives r I = (D 1 = 0. 
Any nonzero solution of (A6) for (x2, Y2, w2) is now seen to be a multiple 
of (xt,  Yl, Wl) and could therefore be incorporated in the first-order term. 
Thus we may take x 2 = Y2 = w2 = 0. The associated equation for z2 is 

Z2 d- bz  2 = x 1 Y l  (A7) 

Representation of physical quantities by the real part  of a complex expres- 
sion may be maintained, despite the introduction of nonlinear terms, using 
a trick due to Knobloch etal.(8): the product of two variables ZlZ2 is 
written as Zl(Z2 + z~)/2.  We find 

r~ ( be2i~ 

z2 2b(ic~o+ 1) 1 -t 2t-t-t-t-~bJ (A8) 

At third order 

(x3)( i 2xl ) 
Lo Y3 = - i c o z y l  + r 2 x l - - x l z 2  

w 3 -- im 2 w 1 

(A9) 

It is convenient to use the above technique to evaluate x l z 2  in such a way 
that e -i~t terms are eliminated in favor of e io' terms. The need to avoid 
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breakdown of the whole perturbation scheme due to the appearance of 
nonperiodic terms in the solution for (x3, Y3, w3) is expressed by the 
solvability condition or Fredholm alternative, (14) 

Mo[terms in rhs of (A9) oc e i~ = 0 (A10) 

Elimination of ro and d 2 in favor of 0)0 using 

2(1+0) 2 ) d2 (0)2 --~- 02)(1 --~- 0 ) 
r~ 1 -- a ' a2(1 -- a) (Al l )  

simplifies (A10) to yield 

20)o0)2(1 + 2a + i0)o) + ar2(i0)o + a) 

a ( i0 )o+a) (1  1 1 - i0 )o~  
1 - a b + 2 2i~o + bJ (A12) 

Given a particular set of parameter values, the real and imaginary parts of 
(A12) may be solved for r 2 and e) 2. Of particular interest, however, is the 
transition between supercriticality and subcriticality which occurs when 0)2 
is real at rz = 0. This condition reduces to 

0)2_ a(1 + 2a) b(b + 2 ) -  3b2(1 + a) 
2(4 -- b)(1 + a) - b(b + 2) 

(A13) 

A similar calculation for the Hopf bifurcation from steady convection gives 
the solvability criterion 

--i0)2(M01Xl + Mo2x2 + Mo3x3 + Mo4x4) 

+ s2{ --Mo2z 1 + M03 [(1 + d 2) x 1 Jr- Yl "]} 

+ [--Mo2(XlZ2 + x2zl)  + Mo3(Xl  Y2 + Yl x2)] = 0 (A14) 

where 

Mm = (i0)0 + 1 )( i0)0 + b )( i0)o + a) + s2( i0)o + a) 

M02 = (i0)0 + b)(i0)o + a) a 

Mo3 = --SoO'(i0)o + a) 

Mo4 = ad[(i0) o + 1)(i0) o + b) + s 2 ] 

(A15) 
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and 
X I = e TM 

1[ 0-2a2 ] 
Y i = g  (iCOo+0-)-~ i~-ooT0-je ,~ 

~1 + d  2 iCOo+ 1 (iaJ0+0-)+io___77_~._lje,,,,, 
Z I ~  �9 ___ t 'So 0-So 

0-d 
W 1 ~ - -  e TM 

iCOo + 0- 

and the nonlinear terms are 

8 7 3  

x ~ z 2 = ( ~  E + F )  e TM 

z ' x 2 = ~ {  l+d2so 

(A16) 

(A17) 

x l y 2 = ( ~ C + D )  e '~ (A19) 

1 ( 0-2d2 "]AeiO, ' 
Y t X2 = ~-~ ( 0- -- i~176 + 0- _ iOo / 

1( 0-2d2 "] 
+ - (0- + iooo) + Be TM (A20) 

0- 0- + iOOoJ 

where only terms proportional to exp(icot) have been retained. Defining 
K= 1 + d e, we can determine the coefficients A to F from the equations 

- K A  + (2ico + 1) C + s o E  

2 S----0 ]" { i(D0 -1- 1 I 11700. 0 - 0-2d2 ]/? = - K +  0- (iroo + 0-) + .-----7--3 j (g21) 

- K s o A  - s o C +  (2ico + b) E 

= 2-~ [(iOo 0-2d2 ] ~ 
+ a) -t i~--o +0-J (A22) 

B = b F -  1 -t (A23) 
2Kso -2 0-7+---o211 j 

I 0-2d2 7) 1 zi_COo (~--  i~ + | }  Ae~  ' 
0-So 0- -- icood J 

{ I 0-2d2 ~] + 'l+d2so 1 + ir176176 ( 0 - + i c ~ 1 7 6  Bei~~ (A18) 
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1 [  ~r2d 2 ] 
C = -  (2ice o + a ) + -  A (A24) 

a 2i~Oo + a 

D = KB (A25) 

1 (" O9o2- o " ~r + o92.'~ 
F =  2S-~o \K-~ -- ad 2 (A26) a 2 + ~<]) 

Solving the two equations which comprise the real and imaginary parts of 
(A13) determines (.o 2 and s2, a tedious piece of algebra delegated to a 
computer. 

When ~r= 10, b = 8 / 3 ,  and d = 0 ,  our computer program gives 
r - r r ~ = - 0 . 0 2 1 4 4 e  2, in excellent agreement with Rowlands' multitime 
analysis of the basic Lorenz equations. (is) 

A P P E N D I X  B 

This Appendix gives details of the calculations outlined in Section 4. 
We wish first of all to integrate equations (4.8). From (4.8c) and (4.9) 

Z'  = [ 2 ( B -  Z ) ( Z  + B ) ( Z  + A)] 2/2 (B1) 

which has solution (see Byrd and Friedman, (~7) w 

where u = [ ( A + B ) / 2 ] m ~  (B2) Z = B(1 - 2 snZu), 

and the modulus k is given by 
2B 

k 2 = (B3) 
A + B  

This solution is valid provided 0 < k <  1, i.e., A > B > 0 .  In the region 
LAI <B,  reordering the factors in (B1) allows the solution 

Z = B -  (A + B) sn2u, U = B1/2"c 

A + B (B4) 
k 2 - 

2B 

and q are determined from (4.9) and (4.8a): 

= -t-2m(A + B) m dn u]  

q -T-2Bsnucnu J" 

= + 2 m ( A  + B )  1/2 c n  u ]  

rl -T- 2kB sn u dn u J" ' 

A > B > 0  (B5) 

IAI < B (B6) 
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Due to the periodicity of the elliptic functions, these solutions are periodic 
orbits, periods 2K and 4K, respectively. If ]A I < B, increasing u by 2K maps 
( ~ , q , Z , # )  to ( - 4 , - q , Z , - k t )  and the orbit is symmetric. (Although 
/~=C, we show below that C = 0  if fA[<B).  Naturally, the symmetry 
properties of orbits are unaffected by the rescaling (4.6). Conversely if 
A > B > 0, increasing u by K reveals the solution to be asymmetric. Either 
way, we may make a choice of sign; in (B6) the upper and lower signs 
represent the same orbit, while in (B5) the two signs represent orbits which 
are mapped into each other by the symmetry. 

Proceeding to the situation where ~ is small but finite, the average rate 
of change of A in the time interval Ar is 

3A 1 ~(~ + ~) dA dr 
- - = - -  | ~ du (B7) 

dA/& is given by (4.10) and is O(e). Writing u = e r ,  where 
e = [1/2(A + B)J 1/2 or B 1/2, we may set A u =  eAr and dz/du= 1/e in (B7), 
incurring an error of order e 2, which is negligible. Thus, 

AA 1 U(~+~I dA 
! du (BS) 

Similar equations apply for B and C. Substituting from (4.10) and integrat- 
ing gives the averaged equations 

and 

f 4Ba E b B  7cB 1/2 } 
KA'  = e ( b a K - ~  - ~ -  [(2 - k 2) K -  rE]  + - - ~  adC 

3Kk4B'= - e { 4 B [ ( 2 -  k 2) E - 2 ( 1  - k  2) K] 

+ bB[4(k  2 - 2) E + (3k 4 - 8k 2 + 8) K] 

+ 3bak2EZE-  K(2 - k2)] } 

[" B 1/2 "k 
K C ' =  - e ~ C K + - - - ~ - a d ~ )  (A > B > 0 )  

(B9) 

KA'  = e{Kba + b B ( 2 E -  K) -- 4 B a l E -  (1 - k z) K] } 

3KB' = - e  {4B[K( 1 - k 2) + E(2k 2 - 1 )] + 3 b a ( 2 E -  K) 

+ bB[K(4k  2 - 1) + 4E(1 - 2k2)] } 

C' = - ~ a C  (IA[ < B) 

( m o )  
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The constants K and E are complete elliptic integrals of the first and 
second kind. 

In the regime IA[ <B, stationary points occur only if C = 0 ,  and 
solutions with C # 0 tend exponentially to the C = 0 plane. The first two 
equations in (B10) are then identical to those derived for the Lorenz model 
by Sparrow, (16) so the behavior in IAI<B is unaffected by rotation. 
Sparrow introduced the parameter 2 =  ( a+  1)/(b+2) and showed that a 
unique stationary point existed if and only if 2 > 2/3. 

In the other regime, A > B > 0, setting C ' =  0 gives 

B 1/2 drc 
C -  (Bll)  

k K  

Substituting in the equation A '=  0, we have 

4Bcr bB dZTzZB 
0 = b a K -  ~ E -  - ~  [(2 - k 2) K -  2El - a k2 K (B12) 

As it can be shown that the term in square brackets is positive, Eq. (B12) 
determines a unique value for B. Inserting this value into the equation 
B '=  0 produces a condition relating k to a, b, and d. It does not appear 
possible to write this condition concisely in terms of a parameter such as 
2. Instead, solving for cr, we obtain 

b + (b + 2) f (E ,  K, k) 
o - 2 + ltZd2/2KE (B13) 

where 

f (E ,  K, k ) =  K [ ( 2 -  k2) E - 2 ( 1  - k  2) K] 
3 E [ ( 2 -  k 2) K - 2 E ]  

(B14) 

(1 + d  2) a = b  + 1 +~4 k4 b d 2 - b - 2  
1 + d 2 (B15)  

If d 2 < (b + 2)/b, the expression for a is a decreasing function ofk  for k just 
above O. It must subsequently pass through a minimum before increasing 

When k = 0, the right-hand side of (B13) equals (b + 1)/(d2 + 1). As k ~ 1, 
K ~  logarithmically and E(1 )= I ,  so the right-hand side tends to 
infinity. We conclude that there exists at least one stationary point for 
a > ( b + l ) / ( d 2 + l ) .  If k is small, (B13) and (B14) can be expanded as 
power series in k 2, using the series expansions for E and K in Byrd and 
Friedman, (~7) w Retaining terms of order k 4, we have 
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again in order  to become infinite at k = 1. Numerical  calculation of  this 
expression using N A G  routines S21BBF and S21BCF shows it to have no 
other  turning points. Because the k 2 term in (B15) is identically zero, the 
min imum is rather shallow and no stat ionary points exist when ~r is 
appreciably less than (b + 1 ) / (d  2 + 1). 

The boundaries  of  the two regimes are defined by the relations B = 0, 
A = - B ,  and A = B. When  A = +B, the averaged equations assume the 
same form as in the nonro ta t ing  problem, and need not  concern us further. 
On  the line B = 0, k = 0 and K = E = n/2. The averaged equations reduce to 

A '  ~ e a [ b  - 2A(1 + d2)]  

B'  ..~ � 88  - 2b  - 2) 
(B16) 

with a s tat ionary point  at A =b /2 (1  +rig) ,  B = 0 .  The stat ionary point  is 
stable provided a <  ( b +  1 ) / (d2+  1), whereupon trajectories with small, 
positive B decay toward B = 0. 
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